
/

Software Construction and Analysis Tools for Future

Space Missions

Michael R. Lowry

Comput,_tional Scicnces Division
NASA Ames Research Center

Moffett FieLd) CA 94303 USA
mlowryOmai i. ar c .nasa. gov

Abstract. NASA and its international parmers will increasingly depend on
software-based systems to implement advanced functions for future space

missions, such as Martian rovers that autonomously navigale long distances

exploring geographic features formed by surface water early in the planet's

history The soltware-based f_netioas for these missions will need to be robust

and highly reliable, raising slgnificanr challenges in the context of recent Mars

mission failures attributed to software faults. After reviewing these challenges,
this paper describes toots that have been developed at NASA Ames that could

contribute to meeting these challenges: 1) Program synthesis toots based on

automated inference that generate docun",m_tation for manual review and

annotations for automated certification. 2) Model-che_:king tools for concurrent
object-oriented software that achieve sea]ability through synergy with program

abstraction and static analysis tools.

This paper consists of five sections. The first section describes advanced capabilities

needed by NASA for future missions Ihat are expected to be implemented in software.

The second section describes the risk factors associated with complex software in

aerospace missions. To make the._e risk factors concrete, some of the re.cent software-

related mission failures are summarized, There is a considerable gap between current

technology for addressing the risk factors associated with complex software and the

future needs of NASA. The third section develops a model of this gap, and suggests

approaches to dose this gap through software tool development. The fourth section

summarizes research at NASA Ames towards program synthesis tools that generate
certifiable code. The fifth section summarizes research at NASA Ames towards

soflware model-checking tools.

eI£ :LO 20 02 ,Jell

1. Software: Enabling Technology for Future NASA Missions

NASA's strategic plan envisions ambitious missions in the next forty years that will

project a major human presence into space. Missions being studied and planned

include sarnpte returns from comets, asteroids, and planets; detection of Earth-like

planets around other stars; the sea?ch for the existence of life outside the Earth,

intensive study of Earth ecosystems, and the human exp]oration of Mars. A major

enabling factor for these missions is expected to be advanced software and computing

systems. This section describes some of the requirements for these mission
capabilities.

Autonomous Spacecraft and Rovers. NASA's mission of deep space exploration

has provided the requirement for one of the most stressing applications facing the

computer science research community -- that of designing, building, and operating

progressively more capable autonomous spacecraft, rovers, airplanes, and perhaps

evert submarines. NASA is planning to fill space with robotic craft to explore the
universe beyond in ways never before possible. These surrogate explorers need to be

adaptable and self-reliant in harsh and unpredictable environments. Uncertainty about
hazardous terrain and the great distances from Earth will require that the rovers be

able to navigate and maneuver autonomously over a wide variety of surfaces to

independently perform science tasks. Robotic vehicles will need to become

progressively smarter and independent as they continue to explore Mars and beyond.
In essence, robust autonomy software needs to be highly responsive to the

enviromnent of the robotic vehicle, without the constant intervention and guidance

from Earth-based human controllers In the case of Martian rovers, in the past Earth

controllers would up-link commands each Martian day for limited maneuvers (e.g.,
roll ten meters forward northeast), which would be executed b]indly by the rover. In

the future, the commands will be for much more extensive maneuvers (e.g., navigate a

kilometer towards a rock formation that is beyond the horizon) that require complex

navigation skills to be executed autonomously by the rover, with constant adaptation

to terrain and other factors, Such autonomy software, running in conjunction with an
unknown environment, will have orders of magnitude more possible execution paths

and behaviors than today's software.

In addition to autonomy for commanding and self- diagnosis, there is an increasing
need for an autonomous or semi-autonomous on-hoard science capability. Deep space

probes and rovers send data back to Earth at a very slow rate, limiting the ability of
the space science corrtrmmity to fully exploit the presence of our machines on distant
planets. There is a strong need for spacecraft to have the capacity to do some science
processing on-board in an autonomous or semi-autonomous fashion.

Human Exploration uf Space. A human mission to Mars will be qualitatively more

complex than the Apollo missions to the moon. The orbital dynamics of the Mars-
Earth combination means that low-energy (and hence reasonable cost) Mars missions

will last two orders of magnitude longer than the Moon mis.qlnns of the sixties and

seventies - specifically, on the order of five hundred days. To achieve science returns
commensurate with the cost of a human Mars mission, the scientist-astronauts will

er,2"/n _n n_ _e_

need to be freed from the usual pole of handyman and lab technician. They will need

to have robotic assistants that support both the scientific aspects of the mission and

also maintain the equipment and habitat. A particularly interesting issue that arises is

that as spacecraft systems become increasingly capable of independent i_aitiative, then

the problem of how the human crew and the autonomous systems will interact in
these mixed-initiative environments becomes of central importance. The emerging

area of Human-Centered Computing represents a significant shift in thinking about

in.formation technology in general, and about smart machines in particular. It

embodies a systems view in which the interplay between human thought artd action

and technological systems are understood as inextricably linked and equally important

aspects of analysis, design, and evaluation.
Developing and verifying software for rnixed-initiative systems is very

challenging, perhaps more so than for completely autonomous software. In contrast to
the current human command/software executes blindly paradigm, mixed-initiative

software has far more potential execution paths that depend on a continuous stream of

human inputs. In this paradigm, the human becomes a complex aspect of the
environment in which the software is executing, much more complex than the terrain

encountered by a Martian rover. Furthermore, from the human viewpoint, mixed-
inhiative software needs to be understandable and predictable to the humans

interacting with it. Today's methods for developing and verifying high-assurance

mixed initiative software are woefully inadequate. For example, aviation autopilot

and flight-management systems behave in ways that are often bewildering and
unpredictable to human pilots. Even though they decrease the manual workload of

human pilots, they increase the cognitive workload. Automation surprises have been

implicated in a number of aviation fatalities. For a mixed human/robotic mission to
Mars, the robotic assistants need to be both smart and well-behaved.

2. Aerospace Software Risk Factors

While advances in software technology could enable future mission capabilities at
substantially reduced operational cost, there are concerns with being able to de'qgn

and implement such complex software systems in a reliable and cost-effective matter.
Traditional space missions even without advanced software technology are already

inherently risky. Charles Perrow's book [1} identifies two risk dimensions for high-
risk technologies: interactions and coupling. Complex interactions are those of

unfamiliar or unexpected sequences, and are not immedialely comprehensible.

Systems that are tiglitly coupled have multiple time-dependent processes that cannot

be delayed or extended, Perrow identifies space missions as having both

characteristics; hence space missions are in the riskiest category.
The risks that software errors pose to space missions are considerable. Peter

Neumana's book [2] catalogues computer-related problems that have occurred in both

manned and unmanned space rnissioas. Given the risks already inherent with today's
software technology, flight project managers are understandably reluctant to risk a

science mission on new unproved information technologies, even if they promise cost

savings or enhanced mission capabilities. This creates a hurdle in deploying new

eRP. :/.fl 2._ [3;_ .Jel4

technologies, since it is difficult to get them incorporated on their first flight for f_ight
qualification. NASA is addressing tl_s hurdle through flight qualificauon programs

for new techno/ogy such as New Mil)enmum. However, flight project managers also
need to be convinced that any information technology can be verified and validated in

the specific context of their n'ussion. This poses a special challenge to advanced
software technology, since traditiona] testing approaches to V&V do not sca]e by
themselves.

This section next reviews several softwar_ errors that have had significant impact
on recent space rmssiom, in order to draw historica] lessons on the difference between
software failles and hardware failures.

Ariane 501. The first launch of Ariane 5 - Flight 501 - ended in a disaster that was

caused by a chain of events originating in the inappropriate reuse of a component in
Ariane 4's inertial reference frame software, and the lack of sufficient clocumentation

describing the operating constraints of the software. Approximately 40 seconds after

launch initiation, an error occurred when an unprotected conversion from a 64-bit
floating point to a 16-bit signed integer value overflowed. This error occurred both in

the active and backup system. The overflow of the value, related to horizontal

vdocity, was due to the much greater horizontal velocity of the Ariane 5 trajectory as

compared to the ArJane 4 trajectory. This error was interpreted as flight data and led

to swiveling to the extreme position of the nozzles, and shortly thereafter to self-
destruction.

The full configuration of the flight control system was not analyzed or tested

adequately during the Ariane 5 development program. The horizontal velocity va]ue

was actually critical only prior to launch, and hence the software was not considered

flight critical after the rocket left the launch pad. However, in the case of a launch
delayed near time zero, it could take a significant period for the measurements and

calculations to converge if they needed to be restarted. To avoid the potential situation

where a delayed launch was further delayed due to the need to recompute this value,
the caiculation of this value continued into the early stages of flight.

Like many accidenls, what is of interest is not the particular chain of events but
rather the failure to prevent this accident at_the many levels the chain could have been

intercepted: I) The development organization did not perform adequate V&V.

2) Software reuse is often seen a.s a means of cutting costs and ensuring safety
because the software has already been 'proven'. However, software which works

adequately in one context can fail Jn another context. 3) As stated in the accident

review report [3], there was a 'culture within the Ariane programme of only
addressing random hardware failures', an.d thus duplicate back-up systems were seen

as adequale fai]ure-handling mechanisms. Software failures are due to design errors,
hence failure of an active system is highly correlated with failure of a dup]icate back-

up system. 4) Real-time performance concerns, particularly for slower flight-qualified
computers, can lead to removal of software protection mechanisms that are known to

work; in this case the protection for the floating point conversion

The board ot_ inquiry concluded that: "software is an expression of a highly
detailed design and does not fall in the same sense as a mechanical system. Software

is flexible and expressive and thus encourages highly demanding requirements, which

in turn lead to complex implementations which are dif_cu]_[to access." The fact that

thissoftwareworked without error on Ariane 4. and was not critical after the rocket

left the launch pad, contributed to overlooking this problem.

Mar_ Path£mder. Today's aerospace software is increasingly complex, with many

processes active concurrently. The subtle interactions of concurrent software are
particularly difficult to debug, and even extensive testing can fail to expose subtle

timing bugs that arise later during the mission. In the July 1997 Mars Pathfinder
mission, an anomaly was manifested by infrequent, mysterious, unexplained system
resets experienced by the Rover, which caused loss of science data. The problem was

ultimately determined to be a priority inversion bug in simultaneously executing

processes. Specifically, an interrupt to wake up the communications process could

occur while the high priority bus management process was waiting for the low
priority meteorological process to complete. The communication process then
blocked the high priority bus management process from running for a duration

excccding the period f_r a watchdog timer, leading to a system reset. It was judged

after-the-fact that this anomaly would be impossible to detect with black box testing.
It is noteworthy that a decision had been made not to perform the proper priority
inheritance algorithm in the high-priority bus management proces_ - because it

executed frequently and was time critical, and hence the engineer wanted to optimize
performance. It is in such situations where correcmess is particularly essentiai, even at

the cost of additional cycles.

Mars Climate Orbiter and Mars Polar Lander. In 1998 NASA launched two Mars

missions. Unfoxtunate]y, both were lost, for software-related reasons. The Mars

Climate Orbiter was lost due to a navigation problem following an error in physical

units, most likely resulting in the spacecraft bunting up in the Martian atmosphere
rather than inserting itself into art orbit armmd Mars. An onboard calculation

measured engine thrust in foot-pounds, as specified by the engine manufacturer. This
thrust was interpreted by another program on the ground in Newton-meters, as

specified by the requirements document. Sin'filar to Ariane 501, the onboard software

was not given sufficient scrutiny, in part because on a previous mission the particular
onboard calculations were for informational purposes only. It was not appreciated that

on this mission the calculations had become critical inputs to the navigation process.
The ground-based navigation team was overloaded, and an unfortunate alignment of

geometry hid the accumulating navigation error until it was too late.

The Mars Polar Lander was most probably lost due to premature shutdown of the
descent engine, following an unanticipated premature signal from the touchdown
sensors. The spacecraft has three different sequential control modes leading up to

landing on the Martian surface: entry, descent and landing. The entry phase is driven
by timing: rockets firings and other actions are performed at specific time intervals to

get the spacecra_ into the atmosphere. The descent phase is driven by a radar

altimeter: the space, Taft descends under parachute and rocket control. At thirty meters

above the surface the altimeter is no longer reliable, so the spacecraft transitions to the
landing phase, in which the spacecraft awaits the jolt of the ground on one of its three

legs; that jolt sets off a sensor which signals the engines to turn off. Unfortunatdy, the

spacecraft designers did not realize that the legs bounce when they are unfolded at an
altitude of 1.5km, and this jolt can set off the touchdown sensors which latch a

softwarevariab}e.Whenthespacecraftentersthelandingphaseat30m,andthe
software starts polling the flag, it will find it already set, and shut off the engines at
that point. The resulting fall would be enough to fata/]y damage the spacecraft.

Lessons from Software Failures during Space Missions.

1) Software failures are latent design errors, and hence are very different from
hardware failures. Strategies for mitigating hardware failures_ such as

duplicative redundancy, are unlikely to work for software.

2) The complexity of aerospace software today precludes anything approaching

'complete' testing coverage of a software syslern. Especially difficult to test
are the subtle interactions between muldpIe processes and different

subsystems.
3) Performance optimizatio'as resulting in removal of mechanisms for runtime

protection from software faults (e.g., removal uf Ariane 5 arithmetic

overflow handler for horizontal velocity variable), even when done very

carefully, have often led to failures when the fault arises in unanticipated

ways.

4) Reuse of 'qualified' software components in slightly different contexts is not

necessarily safe. The safe performance of mechanical components can be

predicted based on a well-defined envelope encompassing the parameters in
which the component si_ccessfully operated in previous space missiotts.

Software components do not behave linearly, nor even as a convex function,

so the notion of a safe operating envelope is fundamentally mistaken.

Although the missioJJs beyond the next ten years are still conceptual, p)ans for the

nex_ ten years are reasonably well defined. Sometime in the next decade, most likely

2009, NASA plans to launch a robot mission that will capture a sample of Martian

s0il, rocks, and atmosphere and return it to Earth. The soflware for this mission could

be 100 times more complex than for the Mars Climate Orbiter. The software for
missions beyond this 2009 Mars _an_pJe return, requiring the capabilities described in

the first section of this paper, will be even more complex. The next section of this

paper present_ a framework for a_scssing the lJkelihuud of success for these rrnssions
if current trends continue, and the potential for software construction and analysis
tools to revcrsc these tre_lds.

3. A Model for Software Reliability versus Software Complexity

The aerospace industry, like most other industries, is seeing an increasing importance

in the role played by software: the amount of software in a mission is steadily
increasing over time. This has delivered substantial benefits in mission capabilities.
Software is also comparatively easy to change to adapt to changing requirements, and

software can even be changed after launch, making it an especially versatile means of
achieving mission goals.

_n 17::7.QeU

The following table provides historical data from a small number of space

missions, and gives flight software in thousands of lines of source code. Note that
while Cassini (a mission to Saturn that will be in orbit around Saturn in 2004) and

Mars Pathfinder launched in the same year, developmem of CassinJ started many
years earlier. The data clearly indicates an exponential growth over time in the size of

flight software. This exponential growth is consistent with other sectors of aerospace

including civilian aviation and military aerospace. In a subsequent graph we will use a
log scale for thousands of line of source code versus a log scale for expected number

of rmssion-critica] software errors to extrapolate a mode] for expected software

reliabiJity, and the potential impact of various kinds of tools.

I Mission Launch Year ThousandsSLOC
Voyager 1977 3
Galileo 1989 8

Cassini 1997 32
Mars Path Finder 1997 1GO

Shuttle 2000 ,_30

]S S 2000 1700

Although qualitative data on software reliability, or lack thereof, is abundant,

empirical quantitative data is difficult to find. Our graph will take advantage of 'iso-

level' tradeoffs between reliability, cost, and schedu]e. Fortunately, the empirical data
on software development cost and schedule has been well analyzed, providing a basis

for extrapolating reliability from cost and schedule. At any stage of maturity of
software engineering tools and process the multiple criteria of reliability, cost, and

schedule can be traded off against each other (within limits). For example a software

manager might choose to compress development schedule by increasing overall man-

power; the empirical data indicates that this increases total man-years and hence cost.
As another example a manager might limit the number of design and code reviews

and incur greater risk of overlooking a misslon-criticai software error.
The empirical data on software development cost and schedule as it relates to

increasing size and complexity has been extensively studied by Barry Boehm. who

has developed mathematical models of cost and schedule drivers that have been
statistically validated and calibrated. The models indicate a super-llnear growth in

cost and schedule with the increasing size of software, hence we should expect an

accelerated exponential growth in cost and schedule for mission software in future
years without changes in technology and methods. In Boehm's model [4], a primary

factor contributing to this sup=-linear growth is the cost and time to fix unintended
non-local interactions: that is, unintended interactions between separate software

components and unintended interactions between software and systems.
Both the quantitative cost/schedule data and the qualitative record on software-

induced failures are readily understandable: as the size of software systems increase

(and the number of elements wlfich interact increases proportionally) the number of
potential interactions between elements grows quadratically. Tracking down these

interactions is complex and difficult, fixing bad interactiou'_ without introducing new

errors takes time and money, and the consequences of not fixing unintended

interactions can be fatal. We thus extrapolate Barry Boehm's schedule/cost model to

P_ : / n _n n_ Jew

an analogous model for software reliability. The model is based on proportional

factors of expected interactions between components as software size increases. If

every one of S components interacted with every other one there would be S 2
interactions. Fortunately, the inleractions are sp,'u-ser; the best calibration over many

projects gives art exponent of 1.2 as indicated by growth in cost and schedule. The
data also indicates that improvements in software process not only reduce lhe total

number of errors but also the growth in errors as software size increases. For snftware

projects with high levels of process maturity, the exponent is 1.1. This makes sense:
better engineering management giver a handle on unintended interactions through

better communication and coordination across the development organization, as well
as better documentation.

In the figure below we show the number of predicted mission-trident errors versus

size of m.Jssion software (LOC - liues of source code), on a log-log scale. We assume
that the number of errors is proportional to (S/M) N, where S/M is the number of

components (modules), computed as the number of source lines of code divided by

the [ines per module. For the baseline model, we take the number of lines of code per

module, M. to be 100. For this baseline model the exponent Nis assumed to be 1.2.

The model Js calibrated with an assumption of a 40% probability of a critical software

error at lOOK SLOC, based on recent deep space missions. (More specifically, the
vertical axis is interpreted as the mean number of expected critica/software errors.)

This is a conservative estimate based on recent missions including Mars Polar Lander,
Mars Climate Orbiter, and Mars PathFinder.

This model indicates that the probability of critical errors is small with systems

under]0K SLOC, but grows super-linearly as the _ze grows towards what is

expected of future missions incorporating advanced software technology. Without
improvements in software tools and methods, this model predicts a low chance of a

space mission being free of critical software errors beyond 200K SLOC lcvcl. Of

course, there are many examples of commercially viable software systems that are

much larger than 200K SLOC. However, comrnerci',d viability is a much lower

standard of reliability, and in fact Ihe first deployment of a commercial system seldom
has fewer critical errurs (that can c_asb the system) than predicted in this graph.

I00

o:10

_:0.1

6.01

m

Manage Complexity/_ i60

Tolerate Errors _m,___ . __

, __.1 W Construction T_ols

.025¢_ 0"4 I SW Analysis Tools

i

IOK lOOK 1M IOM

Lines of Code

Although this graph is based on a model that has not been validated, it provides a

conceptual basis for understanding past treads and making future predictions. It also

enables us to visualize the potential impact of tools for software construction and
analysis. This graph is annotated to indicate potential strategies for achieving complex

yet highiy reliable software. Managing Complexity means reducing the slope of the

line by reducing the factor N, Scaling-up SE through software construction tools

means shifting the line over to the right by enabling developer's to produce more

software than the mostly manual process prevalent today. Detecting Errors means
shifting the line down through the ase of .software analysis tools that detect more

errors than is possible through testing alone. Tolerate errors means being able to
detect and recover from errors that occur at runtimc, so that errors that would

otherwise lead to mission failure are recognized and handled. A simple example of
this is runtimc overflow exception handling. Clearly all these strategies will need to

be combined synergistically to achieve complex yet reliable software. Managing
complexity is the focus of the software process community. Tolerate errors is the

focus of the fault-tolerant computing community. The rest of this paper will describe

work at NASA Ames towards the other two strategies that are the topics of TACAS:
software construction tools and software analysi.¢ tools.

4. Software Construction Technology for Certifiable Software

Software construction technology such as autocoders (e.g., MatrixX) or rapid

development environments (e.g., Matlab) have the potential for magnifying the effort

of individual deve]t_pers by raising the level of software development. Studies have

shown that the number of lines of code generated by each individual per day remains
roughly constant no matter at which level they program. For example, the same team

of developers for the Cassini software, coding at the level of conventional
prograr-mning languages, could in theory generate the software for the Mars

Pathfinder mission in the same amount of time using autocoding technology. Thus the
graphs for software cost and schedule versus size of software system are shifted to the

fight, by the log of the expansion factor from the size of the spec given to the

autocoder to the size of the generated code. Furthermore, in theory, the organizational

factors and uon-loc_t] interactions that]end to the superlinear growth in software
errors with increased software size are held constant no matter at which level the

software coding is done. Thus the graph for software errors versus size of software

system is also shifted to the fight by the same factor.

This simple analysis breaks down for mission-critical or safety-critical software,
particularly for software that needs to run efficiently on limited computational

platforms (as is typical for space applications, where the computer needs to be
radiation hardened). For mission-critical software, certification costs dominate

development costs. Unless the certification can also be done at a higher level and then

translated into a certification at a lower level, cost and schedule savings will not be

realized. Similarly, for autocoders that produce efficient code, non-local interactions

are introduced by the autocoder itself, just as optimizing compilers introduce non-

local interactions at the object code level. The non-Idea] interactions that are

introducedmustbeguaranteednottoleadtosoftwarefaults.Thuswithinthe
aerospacedomain,theautomatedgenerationof codeneedsto bedonewith
technologythatensuresreliabilityandaddressescertificationissuestoachievethe
potentialbenefitsofshifting the graph to the right.

The current generation of aerospace autocoding tools are based on traditional

compiler technology, and are subject to the same limitations as compilers. A major

limitation in today's aerospace autocoders is that they perform their process of code
generation in a black-box manner. This leaves a major gap for certification, and

means that with few exceptions any verification that is done at the source
specification level for the autocoder does not count towards certification.

For the past several years, the Automated Software Engineering group at NASA

Ames has been developing program synthesis technology that could address the

certification problem. Specifically, the technology generates code through a process

of iterated, fine-grained refinement - with each step justified through automated
reasoning; we use a combination of deductive synthesis [5] and program

transformations. Many sources of error are precluded through this method of

generating software. The record of the justifications for each step provides

documentation and other artifacts needed for ce_ification. The code generation
process is no longer opaque, in fact, the process can potentially be better documented

than with manual code development. Part of the research at NASA Ames has been to

realize the potential of this methodology with respect to certification, as described
below.

Demonstrations of the automated construction of verifiably correct software in the

1980s focused on small examples relevant to computer science, such as programs that
sorted lists. In the 1990s more ambitious demonstrations showed how more

sophisticated programs could be generated. This involved representations of

knowledge beyond low-level programming knowIedge, including algorithm
knowledge [6], design knowledge, .and domain knowledge. These demonstrations

included Amphion/NAIF 1.7], which demonstrated the generation of progra.tm for

calculating space observation georretries, and KIDS/Planware [8], which generated
planning and scheduling programs for military logistics support as well as other
applications.

Recently, the Automated Software Engineering group at NASA Ames has
demonstrated scaling this technology to the avionics domain [9]. and also

demonstrated how this technology could be used to generate artifacts for cerlifica_ion.

Guidance and navigation are primary control functions of the avionlc_ in aerospace
vehicles. Unfortunately, as documented in section 2, faulty geometric state estimation

software within GN&C systems has been a factor in numerous aerospace disasters,
including the Mars Polar lander, the Mars climate orbiter, and Ariane 501; as well as

contributing to many near-misses. Thus in this domain verifiably correct software is
critical.

Amphion/NAV [10/ is a program synthesis system that generates geometric state

estimation programs through iterative refinement. The generated programs iteratively
estimate the values of state variables -such as position, velocity, and attitude- based

on noisy data from multiple sensor sources. The standard technique for integrating
muhip]e sensor data is to use a Kalman filter. A Kalman filter estimates the state of a

linear dynamic system perturbed by Gaussian white noise using measurements

linearlyrelatedtothestatebataltocorruptedbyGaussiauwhitenoise. The Kaiman

filter algorithm is essentially a recursive version of linear least squares with

incremental updates. More specifically, a Kalman filter is an iterative algorithm that
returns a time sequence of estimates of the state vector, by fusing the measurements

with estimates of the state variables based on the process model in an optimal fashion.
The estimates minimize the mean-square estimation error.

Amphion/NAV takes as input a specification of the process mode/(a typical model

is a descrip'tion of the drift of an INS system over time), a specification of sensor

characteristics, and a specification of the geometric constraints between an aerospace

vehicle and any physical locations associated with the sensors - such as the position of
radio navigation aids. The input specification a]so provides architectural constraints,

such as whether the target program should have one integrated Kalman filler or a

federation of separate Kalman fillers. Amphion/NAV produces as output code that
instantiates one or more Kalman filters. Like rapid prototyping environments,

AmphJon/NAV supports an iterative design cycle: the user cart simulate this gene_ted
code, deterrr_ne that it is lacking (e.g., that the simulated estimate for altitude is not

sufficiently accurate), reiterate the design (e.g., by adding a radio altimeter sensor to

the specification), and then rerun the simulation. However, Amphion/NAV also

produces artifacts that support certification.

Within the AmphiorgNAV system, the Snark theorem prover [11] is given the

(negated) specification and the axioms of the domain theory and then generates a
refutation proof and a vector of witness terms for the output variables, in our case
these are applicative terms comprising the synthesized program These terms are then

subsequently transformed through a set of program transformations to produce code

in the target programming language, which is C++ with subroutine calls to the Octave

library (a Matlab clone).

Amphion/NAV produce extensive ducumentation both as a printed document and
an HTML document indexed by links in the generated program. These are both

derived fi'om a common XIVIL document that is generated through the algorithm

described below. This documentation can be used by system developers for teSl and

code review purposes, and also for system integration and maintenance. It supports
code reviews in the certification process, as well a._ providing a trace from the code

back to the specification. The process by 'which the code is generated is documented

by mapping the derivation tree to English language text. The technology for
generating this documentation consists of several components: an algorithm for

generation of explanation equalities from the proof traces [12] together with
instantiation of templates associated with axioms in the domain theory [10], and

XLST translators. We focus here on the fast two components.

Intuitively, an explanation of a statement in a generated program is a description of
connections between the variables, functions and subroutines in that statement and the

objects, relations, and functions in the problem specificatlnn or domain theory. In

other words, an explanation traces back a statement in a program to the parts of the
specification and domain theory from which it originated. The explanations arc

constructed out of templates and explanation equalities.

The algorithm for generating explanation equalities works on the proof derivation

of the synthesized program. The proof derivation is a tree whose nodes are sets of
formulas together with substitutions of the existentially quantified variables, and

whose arcs are steps in the proof (i.e,, they encode the derived-from relation). Thus,

an abstract syntax tree (AST) of the synthesized program and the empty clause is _he

root of this derivation tree (recall that Amphion/NAV generates resolution refutation

proofs). The leaves are domain theory axion_s and the problem specification. Since
the AST and all formulas are represented as tree-structured terms, the derivation tree

JSessel'Itia.lly a Ire,e of trees,

For each position of the abstract syntax tree, the explanation equality generation

procedure traces back tl_ough the defivatbn tree extracting explanation equalities
along the way. These equalities record the links between positions of different terms

in the derivation. Each explanation equality is a logical consequence of the semantics

of the inference rule applied at that point in the derivation tree. For example, a

resolution rule wfl/induce a set of equalities from disjuncts in the parent clauses to
disjuncts in the child clause. The transitive closure of these equalities, the goal

explanation eqt_alities, are derived which relate positions of the generated program
with terms in Ihe specification and formulas in the domain theory.

The second ingredient for constructing explanations that are understandable to

engineers in the domain are explanation templates. Domain theory axioms are

annotated with explanation templates, which consist of strings of words, and variables

linked to the variables in the axiom. There can be multiple templates for each axiom,

where each template is indexed to a particular position in the axiom.

For each position in the generated program, an explanation is constructed through
instantiation of templates linked together through the explanation equalities. First, the

chain of equalities is constructed linking each position in the generated program back

lhrough the derivation tree to the specification and domain theory. Second, the

corresponding chain of templates is constructed by extracting the template (if any)
associated with each node in this chain ('that is, the template associated with the

position in the axiom from which the term was derived). Third, the template_ are

instantiated by replacing the variables (corresponding to variables in the axioms) with
the corrasponding terrra in the problem specification - this correspondence defined by

the goal explanation equalities originating at the variable position. Finally, the

templatcs are concatenated together in the order defined by the derivation n:ee. A

more extensive mathematica! description of this algorit_,'n in terms of equivalence

classes of terms can be found in [10].

Our current research on certifiable program synthesis focuses on generating other
artifacts besides docamentation that support the certification process. We have
developed prototype a_gorithms that generate test ca.¢es which exercise the code. We

are also developing the capability to generate formal annotations in the synthesized

code that support independent certification algorithm_ based on extended static
checking. These algorithms provide an independent check that the code co_orms to

safely prop_ties, such as the consistent me of physical units and co-ordinate frames.

Early results from this research can be found in [13].

J T "d
eqR :/.n _.n El_'. .._e_l

5. Software Analysis Technology

Mathematical verification technology has had a profound effect on commercial digital

hardware engineering, where finding errors prior to initial fabrication runs is orders of

magnitude more cost-effective than discovering these errors afterwards. This
technology includes equivalence checkers for combinatorial aspects of digital circuits

and model checkersforsequentialand concurrentaspectsofdigitalh_dware systems.

Softwareverificationtechnologycouldhave a similareffecton softwaresystems,

where finding an error prior to system deployment can be orders of magnitude more
cost-effective than finding the error after it has caused a mission-critical failure. From

the viewpoint of the graphical model of software errors versus software size presented

in section 3, software analysis technology shifts the line downward by finding a

substantial fraction of the software errors, which are then subsequently remedied. The
downward shift on this log4og graph is lhe leg of the fraction of errors that are not

found by the analysis tools, e.g., if one percent of the errors are not found, zhen the
graph is shifted down by a constant factor of negative two.

Software analysis technology faces greater technical chalJenges than digital
hardware analysis technology: lack of regularity, non-local interactions, and scale.

Digital hardware is highly regu/ar and repetitive in its layout, a feature that is
implicitly exploited by analysis technology such as BDD-based model checkers. The

regularity of digital hardware appears to keep BDD representations of sets of stares

tractable in size for such modal-checkers. In contrast, software compactly

encapsulates regularity thraugh conslruets such as iteration and recursion. Hence on a
line-by-line basis, software is denser than digital hardware circuits; it is a more

compact representation of the stale-space of a system. Partially because of this lack of

regularity, digital hardware analysis techniques often hit combinatorial explosions
rather quickly when applied to software. Similarly, physical constraints make non-

local interactions in digital hardware costly in power and wiring layout. However,

non-local interactions dominate software, from exception handling to interrupts to

asynchronous interleaving of multiple threads. Finally. the reachable state space that

needs to be analyzed for a software system is usually much larger than for even
complex digital hardware systems such as a microprocessor. Even though the

software executes on the hardware, its state space is an exponential function of not
just a microprocessor, but also the memory in which the program and the data is
stored.

This '_ection will provide an overview of research at NASA Ames to develop
model-checking technology suitable for software. Because model-checking

thoroughly explores the graph of reachable states, ithas the precision needed to find

even subtle errors arising from concurrent software, and hence shift the graph
downward substantially. The automated nature of model-checking makes it

potentia]]y attractive for use outside of the formal methods research community.

However, because of the factors described in the paragraph above, the combinatorics
for model-checking software is much worse than the combinatodcs for similarly

analyzing hardware. In addition, &e semantics of object-oriented software
futzdarr_ntally mismatches the assumptions of previous model-checking algorithms.

To meet these challenges and to increase the size of software systems that could be
analyzed, our research has evolved from case studies using previous model-checking

technology (e.g., SPIN [14]), to prototypes that translated from software artifacts to

the modeling language for previously existing mode] checkers, (i.e. Promela), and

finally to a new model-checking technology buih from the ground-up for the

semantics of object-oriented software. To mcct the challenge of scale, we now use a

synergy of technologies to cut down on thc combinatorics of the reachable state

space. In fact, our Java Pathfinder system incorporates static analysis algorithms [15],

predicate abstraction algorithms [16] based on automated theorem proving, data

abstraction algorithms based on abstract interpretation [17], and guided search

techniques. The result over the last five years has been a steady increase in the

number of source lines of code that can he analyzed, measured both by the size of the

programs that can bc analyzed before running out of main memory (the limiting factor

in explicit state model-checking) and as measured by human productivity when using

the technology. The source lines of code analyzed per person per day has gone up

from 30 lines of code in 1997 to 1,000 lines of code in 2002.

Java PathFinder 2 (henceforth JPF) _18] is a Java model checker built on a custom-

made Java virtual machine (JVM0 that takes as input Java bytecode. The Java

language was chosen as our initial research target because it is a streamlined modern

object-oriented language without complicating factors such as arbitrary pointer

arithmetic. Developing a custom JVM solved the problems of handling the semantics

of an object-oriented language without awkward translations to a model-checker with
mismatched semantics. JPF introduced a number of novel features for model

checking:

• Support for dynamic object creation and class loading

• Support for garbage collection

• Support for floating point numbers

JPF is art explicit-state model checker : it enumerates each reachable system state

from the initial state. In order to not redo work (and therefore be able to terminate) it

is required to store each _tate reached in the graph of states. When analyzing a Java

program each state can be very large and thus require significant rrmmory to store,

hence reducing the sire of systems that can be checked. In .rPF state-compression

techniques [I 9] reduce the memory requirements of the model checker by an order of

magnitude. Another novel leature o1=JPF is the use of symmetry reduction techniques

to allow states that are the same modulo where an obfect is stored in memory to be

considered equal [19]. Since object-oriented programs typically make use of many

o/_jects, this symmetry reduction often al)ows an order of magnitude less states to be

analyzed in a typical program. JPF atso supports distributed memory model checking,

where the memory required for model checking is distributed over a number of

workstations [19], hence enlarging the size of the state space that can be explored by

the number of workstations. Experiments on partitioning the state space over different

workstations showed that dynarrdc partitioning works best, where partitions change

during a model checking run rather than be statically fixed at initialization.

When using JPF to analyze a program for adherence to properties, including

properties specified in temporal logic, a user works with a collection of tools that

analyze and manipulate the program in synea'gy with the core model-checking

algorithm. Some of these tools, such as program slicing and abstraction, are invoked

by the user prior to submitting the program to the model checker. Others, such as

lleurJstics to guide the search of the model checker, are selected by the user as
parameters to the model checker. Below a brief summary is presented of some of
these tools and synergistic algorithms, the interested reader can find more detail in the
cited papers.

Program Abstraction. Program abstraction supports the simp/ification and reduction

of programs to enable more focused and tractable verification, often resulting in
dramatic reductions of the state space. Although our tools support abstraction for both

under- and over-approximations, in practice we mostly use over-approximations that
preserve concrete errors under the abstraction mapping, but potentially introduce

additional spurious errors. The abstractions are done through data type abstraction
(abstract interpretation) and through predicate abstraction [16]. The data type
abstractions are calculated offllne with PVS [20]. The predicate abstraction

technology invokes the Stanford Validity Checker (SVC) [21] to calculate abstract

program statements given a predicate definition. Object-oriented progta_J_ are
particularly challenging for predicate abstraction, since predicates can relate variables
in different classes dmt have multiple dynamic instantiations at run-time.

Static Program Analysis. Static program analysis technology consists of several

classes of algorithms that construct and analyze graphs that repre._ent static

dependencies within programs. Applications of this technology are in program
slicing [22], control flow analysis, concurrency analysis, points to and alias analysis.
Static analysis information can be useful in optimizing and refining model checking

and program abstraction techrdques. All these application', uf static analysis are
incorporated in .TPF and its associated tools.

Environment Modeling and Generation. One of the steps in behavioral verification
is constructing a model of the environment to which the software reacts. Model

checking applies to a closed system. In order to check a reactive .¢ystem such as an

autonomous controller, that system must be completed with a simulated environment

with which it will interact -- in much the same way as testing requires a test harness

and suitable test cases. The environment must reproduce the different possible stimuli
that the system will possibly meet when in operation, as alternative choices that the

model checker can explore. Technology has been developed to support modeling of

complex non-deterministic environments. Environment models are constructed using

a combination of special object-orienled methods to support non-deterministic choice,
generic reusable environment components, and environmental constraints specified in
linear temporal logic/23].

During Ihe course of the re_earch leading to the JPF software model-checking

technology, we have done a series of case studies that both demonstrat,, the increasing
power of the technology to address NASA's needs for reliable software, and also

provided us feedback to inform the direction of our research. Below we highlight

some of these case studies related to the strategic NASA requirements described in
the first section. The case studies address verification of autonomy software,

verification of a next-generation aerospace operating systems, and verification of
mixed-initiative human-machine systems.

Autonomy Software. Starting in 1997 the ASE group ana)yzed parts of the Remote

Agent [24] that formed part of the Deep-Space I mission, the first New MilIennium

mission dedicated to flight validating tt,-w technology in space for future missions.

The Remote Agent is an integrated set of AI-based autonomy software -

planning/scheduling, robust execution, and model-based diagnosis - that is a

protolype for future autonomy software that will control spacecraft and rovers with

minimal ground intervention. The Remote Agent software was tested in space during

the Deep--Space 1 mission. The Remote Agent team asked the ASE group to analyze

portions of the Lisp code prior to going operational in May 1999. The analysis was

performed through manual development of a model in PROMELA of parts of the

code. The SPIN model checker [14], developed at Bell Labs, was used to analyze the

model. The model checking was very successft_ in that it uncovered five previously

undiscovered bugs in the source code [24]. The bugs were concurrency errors and

data race conditions, many of which could have led to deadlock.

After launch, the Remote Agent was run as an experiment for a week in May 1999.

Soon after the experiment began, the Remote Agent software deadlocked due to a

missing critical section in a part of the code that was not analyzed prior to launch

through model checking. After a dump of the program trace was downloaded to earth,

the remote agent team was able to find the error. As a challenge to the ASE group,

without telling us the specific nattue of the error, they asked us to analyze the

subsystem in which the deadlock occurred (10,(900 lines of Lisp code), and gave us a

weekend to find the error. We were able to find the error through a combination of

inspection and model checking [25J; it turned out to be nearly identical to one that we

previously found through model checking (on a different subsystem) prior to launch.

Next-Generation Aerospace Operating System. In 1998 Honeywe/l Technology

Center approached the ASE group with a request to investigate techniques that would

be able to uncover errors that testing is not well suited to find [26]. The next

generation of avionics platforms will shift from federated system architectures to

Integrated Modular Aviouics ('IMA) where the software runs on a single computer

with an operating system ensuring time and space partitioning between the different

processes. For certification of critical flight software the FAA requires that software

testing achieve 100% coverage with a structural coverage measttre called Modified

Condition/Decision Coverage (MC/DC). Honeywell was concerned that even 100%

structural coverage would not be able to en._ure that behavioral properties Iike time-

partitioning will be satisfied. In particular, Honeywell's real-time operating system,

called DEOS, had an error in the time partitioning of the O/S that was not uncovered

by testing.

Similar to the challenge from the Remote Agent team, Honeywell asked us to

determine if model-checking could uncover the error without us knowing any

specifics of the error. At this point we had developed a translator into SPIN, so the

modeling was done directly in a programming language CJava). This considerably

speeded up developing the abstracted model of DEOS. With this technology, we were

able to find a subtle error in the algorithm DEOS used to manage time budgets of

threads. The analysis of the DEOS system was well received by Honeywell and led to

Honeywell creating their own model checking team to analyze future DEnS

enhancements as well as the applications to run on top of DENS.

Human-Computer Interactions. The environment generation technology is a critical
part of our ongoing research in Human/Computer System Analysis. As described in

section one, human/machine interactions are a common source of critical-software

related errors. The technology for environment modeling has been extended for

modeling the incorporation of human actors into system models containing actual

software. This technology consists of specia]ized static analysis and program

abstraction techniques. This was applied in the summer of 2001 by a summer student
to model the interactions of an autopilot and a pilot, successfully uncovering

automation surprise scenarios. In one scenario the autopilot fails to level out at the
altitude specified by the pilot and continues to climb or descend, resulting in a

potentially hazardous situation.

Summary

Complex software will be essential for enabling the mission capabilities required by

NASA in the next forty years. Unfortunately, as NASA software systems evolved
from the tens of thousands of source lines of code typical of the nineteen eighties

deep-space missions to the hunda'eds of thousands of source lines of code typical of

the nineteen nineties and beyond, software faults have led to a number of serious

mission failures. A model of software errors versus size of software systems indicates

that without new software development technology this trend will accelerate. This

model is based on a reasonable extrapolation of models for software cost and schedule

that have been calibrated, and an analysis of underlying causes.

Using this graphical model, we see that software engineering tools can mitigate
this trend towards super-linear error growth through two orthogonal directions:

shifting the graph to the right through software construction technology, and shifting

the graph downwards through software analysis technology. Research at NASA Ames
toward_ software construction tools for certifiable software and towards software

model-checking tools was overviewed in this paper.

Acknowledgements

My colleagues in the Automated Software Engineering group at NASA Ames have

compiled an enviable research track record while working to meet NASA's strategic

goals and challenges described in the first two sections of this paper. The last two
sections of this paper are essentially overviews of recent research within our group.

More detailed descriptions can be found in the cited papers. The graphical model for
software reliability found in section three was developed in conjunction with Cordell

Green of the Kestrel Institute, with input and encouragement from Barry Boehm and
Peter Norvig.

K
el.R :/.13 _.1'3 D_ ._e_l

References

]. Per'row, C.: Normal Accidents: Livine wiLh High Risk Technologies, Princton University
Pt_. _:(1999)

2. Neumann, P.: Compul_ Related Risks, Addison-Wesley Pz_..ss, 1995

3. l.ions.]. "Repor_ of lhe Inquiry Board for A..'i_-ae 5 Flight 501 Failure", Joint
Communication ESA-C-.NES (1996)Paris, France

4. Bochrn, B. et al: Sqflware COF[F,,stimation with COCOMO 1I, Prentice Hall PTR (2000)

5. Green, C.: Application of theorem proving to problem solving. Proceedings lntl. Joint Conf.
on Ard ficial In telligence (1969) 219-240

6. Srru(h, D., Lowry, M., Algorithm theories and design tactics. Lecture Notes in Computer
Science, Vol. 375 (1989) 379-398, Springer-Vcrlag.

7. Stickel, M, Waldinger, R., Lowry, M., Pressburger, T., Underwood, I. : Deductive
Cnmposidoa of Astronomical Software from Subroutine Libraries. Lecture Notes in

Computer Science, Vol. 814. Springer-Verlag (1994).
g. Smith, D.: Kidsr A semiautorr_dc program development syslem. IEEE Trans. Software

EngineeaSng 16(9): 1024-10a3 (1990).
9. Brat. (7,.. I.owry, M., Oh, P., Penix, ./., Pressburger, T., Robinson, P., Schumann, I.,

Subramaniam, M., Whittle, L: Synthesis of Verifiably Correct Programs

for Avionics. AIAA Space 2000 Conference & Exposition, (2000), Lor_g Beach, CA

10. Brat, G., Lowry, M., Oh, P., Penix, J., Pressburger, T., Robinson, P., Schumann, J.,

SubramanJam, M., Van Baalen, J., Whittle, 1.: Amphion/NAV: Deductive Synthesis of

Stale Estimation Software.]EEE Automated Software Engineering Conference I2001), San

D_ego, CA.
] 1. Stickel, M. The saa_'k theorem prover, 2001. http:/lwww.aJ.sri.com['stickellsaark.html.

12. Van Baalen, 1., Robinson, P,, Lowry, M., pressburgc.r, T.: .Explalnitlg synthesized sohware.

IEEE Automated Software Engineering Conference (199g), Honolulu, Hawaii

13. Lowry, M., Pressburger, T., Rosu, G.: Certifying Domain-Specific Policies. IEEE

Automated Software Engineering Conference (2001), San Diego, CA
14 Holzmann, G., Paled, D.: The State of SPIN. Lccturc Notes in Computer Science, Vol.

1102 (1996), Springcr-Verlag.

l_i. Corbett, J., Dwyer, M., Hatcliff, I., Pusarcanu, C., Robby, Laubach, S., Zheng, H. :

Bandera: Extracting Finite-state Models from Java Source Code. Proceedings of the 22nd

Inter'national Conference on Software F..ngi,neet"ing (2000), Limerit:, Ireland.

16. Vissex, W., Park, S., Penix, P.: Using Predicate Abstraction to Reduce Object-Oriented

Programs for Model Checking. Proceedings of the 3rd ACM SIGSOFT Workshop on
_:ormal Methods in Software Practice (2000).

I7. Dwyer, M., Hatcliff, L, Jnehanes, J., Laubach, S., Paszu'ea_u, C., Robby, Visser, W., Zheng,

H,: Tool-supported program abstraction for finite-state verification. Proceedings of the 23rd
International Conference on Software Engineering (2001).

18. Visser, W., Haveluod, K., Brat, G.. Park, S.: Model checking programs. IEEF_, International
Confe.rence on Automated Software Engineering, (2000) Grenoble, France.

19. Lerda, F., Visser, W.: Addressing dynamic issues of program model checking. Lecture

Notes Computer Science, Vol. 2057 (2001), Springer-Voting.
20. Owre, S., Rushby, J., Sha,akat, N.,: PVS: A prototype verification system. Lecture Notes in

Computer Science, Vol. 607 (1992), Sp6nger-Vedag.

21. Barrett, C., Dill, D,, Levitt, I.: Validity Checking for Combinations of Theories with
Equality. Lecture Notes in Computer Science, Vol. 1166 (1996). Spdngr.r-Vertag.

22. Hatcliff, J., Corbett, J'., Dwyer, M., Sokolowski, S., Z,heng, H.: A Formal Study of Slicing

for Multi-lhreaded Programs with J'VM Concurrency Primitives. Pro,:. of the 1999 Int.
Symposium on S'_atic Analysis (1999).

23. Pasarcanu, C.: DEns k_rnfl" Env/ronment mod_ing using LTL assumptions. Technical

Report NASA-ARC-IC-2000-196, NASA Az'_.s. (2000),
24. Hav,'l_d, K., Lowry, M., Pcnix. P.: Formal Analysis of a SpaceCraft Controllf'r ruing

SPIN. Proceexlmgs of the 4th SPIN workshop (1995), Paris, Franc,.
23. Havelund. K.. Lowry, M., Park, S.. Peeheur, C., Ptmix, J., Visser, M., and White, J.: Formal

Analysisof the Remote Agcm B_forc and AfterFlight.Proceedingsof the 5th NASA

LangleyFormal Methods Workshop (2000).

26. Ptmix,I.,Visscr,W., Engstrom, E.,[.arson,A., and Wciningcr,N. Verificationof Time

Partitiomngtn the DEns Schcdt_IcrKcrrt,'L[a Proceedings of th_ 2ZrtdIntemationlti

Conferenceon Softwa.rcEngineering,(2000)Limmc, Ireland.

